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ABSTRACT

The Mole Hill diatreme consists of picrobasalt with abundant megacrysts (0.5 mm to 2cm in maximum 
dimension) of clinopyroxene, Mg-Al-Fe spinel, and (less abundant) olivine. Cognate minerals include 
microphenocryst and groundmass plagioclase, olivine, clinopyroxene and Fe-Ti-(Cr) spinel. Clinopyroxene 
is the most abundant megacryst phase. Overall, the clinopyroxene in the megacryst cores is a high-Al, 
low-Cr augite with Mg# 78-88. Sieve textured rims approach groundmass clinopyroxene compositions. 
Olivine occurs as megacrysts and also as small (0.1- 0.5 mm) crystals of indeterminate origin. These may 
be phenocrysts, xenocrysts, or both. All non-groundmass olivine is zoned, becoming Fe- and Ca-rich (and 
approaching the composition of groundmass olivine) rimward. The most primitive olivine has Fo~90 
and NiO as high as 0.75wt.%. More typically, olivine is Fo78-88 with NiO <0.5 wt.%. The megacryst/
xenocryst olivine cores have higher Mg# and lower CaO than groundmass olivine. Megacrystic spinels 
are notably low in Cr, with Cr# <1, and variable Mg# ranging from 52-74. This variation is appears to 
be continuous, despite the lack of zoning in individual spinel xenocrysts. Plagioclase occurs only as a 
microphenocryst phase, with uniform An75 cores and rims as sodic as An58. Cognate clinopyroxene 
(Mg#67-78) is enriched in Ca and Ti relative to the megacrysts. Groundmass olivine has low NiO and 
high (0.3-0.6 wt.%) CaO. Groundmass spinels have ulvospinel contents near 50%, initially rising with 
Mg# (in Cr-rich microphenocrysts) then dropping. Although the lack of context for the megacrysts 
precludes a definitive understanding of their origin, megacryst chemistry (especially the low-Cr spinels 
and the overall abundance of clinopyroxene) suggests a clinopyroxene-rich source in the upper (e.g. spinel 
zone) continental lithosphere. This source is likely similar to the Al-augite suite clinopyroxenites and 
wehrlites that occur as xenoliths and as intrusive veins in composite xenoliths from alkali basalt provinces 
worldwide. Cognate mineral (groundmass minerals and microphenocrysts) compositions are consistent 
with crystallization from a slightly evolved alkali basalt melt. 

Introduction

A localized series of Eocene alkaline subvolcanic 
necks, pipes, and dikes (Eocene Subvolcanic Suite, 
ESS) outcrops in Highland County, Virginia and 
adjacent Pendleton County, West Virginia (Rader et 
al., 1986; Southworth et al., 1993).  A single isolated 
volcanic plug, Mole Hill, outcrops in Rockingham 
County, Virginia 60 km east of the main field (Fig. 1).  

The suite is intrusive into folded sedimentary rocks 
of Paleozoic age. The rocks of the ESS range in 
composition from picrobasalt to rhyolite. Basaltic 
rocks are nepheline-normative and plot in the 
field of alkaline within-plate basalt (Wood 1980; 
Southworth et al., 1993). Available bulk element 
and isotope chemistry is consistent with a mantle 
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origin for the suite with little evidence for crustal 
contamination aside from obvious xenoliths of 
high-level lithologies (e.g. Paleozoic limestone and 
sandstone) (Southworth et al., 1993; Tso et al., 2004; 
Tso and Surber, 2006). The more silicic rocks of the 
ESS appear to have been emplaced during explosive 
eruptions, as borne out by the presence of breccia 
pipes and peperites (Rader et al., 1986; Tso and 
Surber, 2006) and by the recognition of correlative 
volcanic ash deposits in the Eocene rocks of the 
North Carolina Coastal Plain  (Harris and Fullagar, 
1989). Several of the mafic plugs, including Mole 
Hill, have been interpreted as diatremes. Although 
the tectonic setting for the emplacement of these 
rocks is far from obvious, they seem to follow a NW-
trending lineament associated with a NW trending 
fracture set. This may indicate emplacement along 
reactivated orogen-parallel faults. Southworth et 
al. (1993) suggest that this reactivation is related 
to extension accompanying plate reorganizations 
between 37 and 53Ma.

The Mole Hill diatreme consists of alkali olivine 
picrobasalt (tentative designation based on limited 
data) containing abundant large (0.5 mm to 2cm; large 
in the context of the host basalt) crystals of olivine, 
spinel and clinopyroxene (henceforth referred to 
as megacrysts) in a largely crystalline groundmass 
consisting of olivine, clinopyroxene, plagioclase, 
and Fe-Ti oxides. This study encompasses the 
description of the composition and compositional 
variability in the crystalline phases of the Mole Hill 
picrobasalt including some interpretation of the 
origin of the megacryst phases.

Petrography and Mineral Chemistry
Methods. Minerals were analyzed using 

the Cameca SX-50 electron microprobe in the 
Department of Geological Sciences at Virginia 
Polytechnic Institute and State University. Beam 
current was 15na, at 20kv; spot size was 3-5 
microns. Counting times were 20 seconds on peak 
and 10 seconds on two background points. A variety 
of natural and synthetic silicates and oxides were 
used as standards.

General. The basalt at Mole Hill is a alkali 
olivine picrobasalt characterized by megacrysts 
of olivine, clinopyroxene, and aluminous spinel 
with a microphenocrysts of  plagioclase, olivine, 
clinopyroxene and Fe-Ti-(Cr) oxides in a fine-
grained holocrystalline groundmass of the same 
mineralogy. A weak to moderate alignment of 
plagioclase laths is apparent in some samples. 

Olivine. Olivine occurs as megacrysts, a 
groundmass phase, and in crystals of intermediate 
size (0.1-0.5 mm) of, apparently, mixed xenocrystic/
phenocrystic origin. 

 Megacryst/xenocryst cores range in (average) 
composition from Fo82-Fo90 (Table 1, Fig. 2). NiO 
content ranges from 0.2-0.6 wt.%, with some 
spot analyses in the most magnesian megacryst 
>0.7wt.% (Fig. 2). CaO concentrations in the 
megacrysts/xenocryst cores are <0.3 wt.% (Fig. 2)
The megacrysts are zoned, with rims approaching 
groundmass olivine compositions and intermediate 
areas that may have partially equilibrated with the 

Figure 1: Location of Mole Hill in Rockingham County, Virginia.

Figure 2. Variations in olivine chemistry, Mole Hill megacrysts and 
groundmass.
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Figure 3. Chemical variation with distance along microprobe traverses in olivine. A, B. Most magnesian xenocryst. C, D. Large (1 cm) 
xenocryst. E, F. Microphenocryst.
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host basalt (e.g. Costa and Dungan, 2005) (Fig. 3).  
The low CaO and high NiO concentrations in 
the megacryst cores suggest that the megacrystic 
olivines are mantle xenocrysts that did not form in 
equilibrium with the host basalt (Simkin and Smith, 
1970; Hirano et al., 2004; Rohrbach et al., 2005). 
Groundmass and (micro)phenocrystic olivine is 
substantially more Fe-rich (Fo68-80) CaO-rich (CaO 
= 0.3-0.6 wt.%) and NiO-poor (NiO concentrations 
are usually below 0.3 wt. % with many values 
approaching detection limits (0.1 wt.%)) than 
the megacryst cores (Table 1; Fig. 2).  Zoning in 
true microphenocrysts is limited (i.e. Fo71-68; Fig. 
3). More strongly zoned intermediate size and 
composition crystals (e.g. Fo80-70) may either reflect 
an early phenocryst phase or partially re-equilibrated 
xenocrysts.

Clinopyroxene. Clinopyroxene is the most 
abundant megacryst and groundmass phase in the 
Mole Hill picrobasalt. There are four chemically 
distinct populations of clinopyroxene in the Mole 
Hill picrobasalt, with two of these represented 
by a single analyzed crystal. Most clinopyroxene 
megacrysts are high-Al (5.6-8.8 wt.% Al2O3) augites 
with TiO2 <1.0 wt.% and  Na2O between 0.4-0.9 
wt.% (Table 2; Fig. 4). Mg#’s of megacryst cores 
(average) range from 78-86. The most magnesian 
and Cr-rich clinopyroxene occurs in a two-crystal 

“xenolith” with a large olivine xenocryst (Figure 
4). The other analyzed xenocrysts vary in Mg# 
(Figs. 4,5), and can be characterized as low-Cr (e.g. 
Cr2O3 <0.2 wt.%). Most xenocrysts are zoned, with 
the sieve-textured rims approaching groundmass 
clinopyroxene composition. Groundmass 
clinopyroxene has Mg# near 70. It can be described 
as salite (Ca-rich augite) and is higher in Ti and, 
for the most part, lower in Al than the megacrysts. 
Some groundmass clinopyroxenes (and megacryst 
rims) have fairly high (>0.3 wt.%) Cr2O3 (Table 2; 
Fig. 4).

Two unusual clinopyroxene xenocrysts 
were analyzed. One has the low Mg# typical of 
groundmass clinopyroxene, but is distinctly lower 
in Ti and enriched in Na and Si with respect to the 
groundmass clinopyroxene (Table 2, Fig. 4). The 
other unique xenocryst is exceptionally enriched 
in Ti, Al and Ca, containing among the highest 
concentrations of these elements ever reported 
(Robinson, 1980) (Table 2). Similar high-Al 
pyroxenes have been reported as phenocrysts in 
alkaline igneous rocks (e.g. Gerke et al., 2005). This 
grain has a sieve-textured rim, suggesting reaction 
with the picrobasalt host, and a xenocrystic (or, 
possibly, high-P phenocrystic) origin seems likely.

Spinel. Aluminous spinels (85-95% aluminous 
(i.e. sp + hc) end-member) occur as large (up to 5 

Table 1. Olivine
VMNH # 81554 81564 81564 81554 81554 81564 81564 81564 81554 81554
sample Mh 1-5-1 Mh 11 Mh 11 Mh 1-5-2 Mh 1-5-2 Mh 11 Mh 11 Mh 11 Mh 1-5-1 Mh 1-5-2
N 6 16 1 5 6 3 12 4 4 5
X’l type mega mega Mega   mega zoned mega phen gmass gmass gmass
notes core v. large core core rim
    SiO2 40.49 41.31 41.04 42.06 40.35 38.45 38.32 37.89 36.98 37.58
     MgO 45.60 47.63 47.21 49.52 43.41 37.50 35.76 33.64 34.08 34.23
     CaO 0.25 0.21 0.25 0.18 0.25 0.40 0.44 0.58 0.48 0.51
     FeO 13.01 12.29 11.56 9.87 16.97 24.41 26.81 28.70 26.72 28.04
     MnO 0.20 0.16 0.17 0.15 0.27 0.50 0.56 0.64 0.65 0.65
     NiO 0.39 0.31 na 0.60 0.25 0.23 0.18 0.18 0.11 0.01
sum 99.93 101.92 100.23 102.38 101.50 101.49 102.07 101.62 99.01 101.02
Cations/4 oxygens
Si 1.007 1.003 1.008 1.006 1.006 0.996 0.998 1.001 0.997 0.996
Mg 1.691 1.725 1.728 1.766 1.614 1.448 1.389 1.325 1.370 1.352
Ca 0.007 0.006 0.007 0.005 0.007 0.011 0.012 0.016 0.014 0.015
Fe 0.271 0.250 0.237 0.197 0.354 0.529 0.584 0.634 0.602 0.622
Mn 0.004 0.003 0.004 0.003 0.006 0.011 0.012 0.014 0.015 0.015
Ni 0.008 0.006 na 0.012 0.005 0.005 0.004 0.004 0.002 0.000
total 2.988 2.992 2.984 2.990 2.992 3.001 2.999 2.996 3.000 3.000
Fo 86.2 87.4 87.9 89.9 82.0 73.2 70.4 67.6 69.5 68.5
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Table 2: Clinopyroxene
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Figure 4. A-F Clinopyroxene chemical variation with Mg#. G. Plot of pyroxene quadrilateral compositions (uncorrected).
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Figure 5. Chemical zoning along microprobe traverses. A-G, most Mg- and Cr-rich Clinopyroxene. H. Other clinopyroxene xenocrysts.
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mm) rounded, pale greenish gray to nearly opaque 
crystals, with opacity correlating with total Fe. 
Most aluminous spinels are rounded, suggesting 
disequilibrium. The most Fe-rich aluminous spinels 
(e.g. Table 3, column 1) tend to be less rounded or 
even subhedral, but are also embayed. Aside from 
the rounding or embayment, the aluminous spinels 
show no other indication of reaction or overgrowth 
with the groundmass basalt. Aluminous spinels occur 
as single separate single crystals, or, less commonly, 
as inclusions in clinopyroxene. The spinels are very 

poor in Cr (Cr# <l) and have Fe+2/ (Fe+2+Mg) ranging 
from 0.26 to 0.51. Ti and ferric iron increase with 
total iron. Mg# increases and ferric iron decreases 
with increasing Al (Figs. 6 and 7). Four individual 
xenocrysts were analyzed for this study and each 
has a distinct chemistry, with significant differences 
in Ti, Fe+2, Fe+3, Mg, and Al content (Table 3). The 
spinel included in clinopyroxene is distinctly higher 
in Cr that the other aluminous spinels (Fig. 7). A 
single, very small, opaque, Cr-rich spinel (Cr/Cr+Al 
= 0.42) was found as an inclusion in olivine (Fig. 6; 

Table 3: Spinels 

VMNH#      81564 81554 81554 81554 81554 81564 81564 81554 81554 81554
sample Mh11 Mh1-5-2 Mh1-5-2 Mh1-5-1 Mh1-5-1 Mh11 Mh11 Mh1-5-2 Mh1-5-2 Mh1-5-1

n 13 33 1 23 7 3 6 1 5 4

x’l type xenocryst xenocryst inclusion xenocryst inclusion phenocryst grdmass pheno? grdmass grdmass

notes in olivine in cpx poikolitic

    SiO2 0.11 0.13 0.13 0.10 0.14 0.10 0.16 0.09 0.09 0.20

   Al2O3 54.58 65.08 30.73 58.81 63.07 6.31 4.28 6.30 2.08 2.21

     MgO 13.27 20.04 14.62 15.55 19.50 4.62 3.40 4.30 1.76 2.11

    TiO2 0.96 0.27 0.62 0.55 0.31 14.65 18.75 13.95 18.09 17.78

     MnO 0.20 0.10 0.13 0.17 0.10 0.53 0.66 0.51 0.85 0.83

   Cr2O3 0.14 0.13 33.51 0.12 0.62 5.43 0.45 8.05 0.13 0.12

Fe2O3 12.18 4.38 5.48 8.06 5.09 29.83 28.59 28.71 31.39 30.80

FeO 22.15 12.87 15.19 18.47 13.06 38.25 43.47 38.30 44.40 43.33

sum 103.58 102.99 100.41 101.82 101.89 99.72 99.77 100.21 98.79 97.39

3 Cations/4 oxygens
Si 0.003 0.003 0.004 0.003 0.004 0.003 0.006 0.003 0.003 0.008

Al 1.709 1.900 1.065 1.812 1.872 0.264 0.182 0.262 0.092 0.098

Mg 0.526 0.740 0.641 0.606 0.732 0.244 0.183 0.227 0.098 0.119

Ti 0.019 0.005 0.014 0.011 0.006 0.391 0.509 0.371 0.508 0.504

Fe+3 0.243 0.082 0.121 0.159 0.097 0.796 0.776 0.764 0.882 0.874

Fe+2 0.492 0.267 0.374 0.404 0.276 1.134 1.311 1.132 1.387 1.367

Mn 0.004 0.002 0.003 0.004 0.002 0.016 0.020 0.015 0.027 0.026

Cr 0.003 0.003 0.779 0.002 0.012 0.152 0.013 0.225 0.004 0.004

total 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Cr/Cr+Al 0.002 0.001 0.422 0.001 0.007 0.351 0.064 0.462 0.039 0.036

Mg# 51.6 73.5 63.2 60.0 72.6 17.7 12.2 16.7 6.6 8.0

end-members
Mt 0.122 0.041 0.079 0.048 0.276 0.288 0.278 0.369 0.356

Uv 0.019 0.005 0.014 0.011 0.006 0.391 0.509 0.371 0.508 0.504

Cr 0.001 0.001 0.389 0.001 0.006 0.076 0.006 0.113 0.002 0.002

Sp 0.520 0.733 0.529 0.601 0.725 0.116 0.071 0.116 0.019 0.023

Gx 0.004 0.002 0.003 0.004 0.002 0.016 0.020 0.015 0.027 0.026
Hc 0.331 0.215 0.000 0.301 0.209 0.000 0.000 0.000 0.000 0.000

Mf 0.000 0.000 0.104 0.000 0.000 0.122 0.100 0.104 0.072 0.081
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Table 3). This Cr-spinel and all of the aluminous 
spinels plot in the fields of mantle xenoliths from 
alkali basalts as defined by Barnes and Roeder 
(2001) (Fig. 6).

Fe-Ti rich opaque spinels occur in the 
groundmass and as microphenocrysts in the Mole 
Hill picrobasalt. Groundmass spinels can be 
classified as titano-magnetite (i.e. uv around 50 and 

Figure 6. Spinel compositions in the Mole Hill picrobasalt. Outlined fields are the fields of xenoliths in alkali basalts taken from Barnes and 
Roeder (2001).
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mt+uv 78-92). Most have calculated magnesioferrite 
between 5 and 10% (Table 3). Poikolitic, opaque 
spinel microphenocrysts have chromite- (4-11%) 
and Mg-spinel- (10-12%) rich cores grading out to 

titanomagnetite rims.  The opaque spinels define 
trends of decreasing Mg and Cr and increasing 
followed by decreasing Ti as the magnetite 
component increases (Fig. 6). These spinels, at 

Figure 7. Aluminous Spinel xenocrysts from the Mole Hill picrobasalt. Individual groups of spots represent spot analyses from single 
crystals. Note the elevated Cr in the spinel included in clinopyroxene. 
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least in part, lie outside the basalt xenolith fields as 
defined by Barnes and Roeder (2001).

Plagioclase. Plagioclase occurs as micro-

phenocrysts, as inclusions in the rims of sieve-
textured clinopyroxene rims, and as a groundmass 
phase in the Mole Hill picrobasalts. Plagioclase is 

Figure 8. Plagioclase microphenocryst compositions, Mole Hill picrobasalt.

Table 4: Plagioclase microphenocrysts

VMNH# 81564 81564 81554 81554 81554 81554
sample Mh 11 Mh 11 Mh 1-5-2 Mh 1-5-2 Mh 1-5-1 Mh 1-5-1
n 11 1 8 3 10 2
notes core rim core rim core rim
    SiO2 48.25 52.67 48.79 51.22 48.43 51.30
   Al2O3 32.17 29.71 32.23 30.76 31.85 30.15
    Na2O 2.84 4.71 2.88 3.83 2.88 4.07
     K2O 0.18 0.33 0.17 0.25 0.18 0.29
     CaO 16.02 12.61 15.78 13.99 15.50 13.38
     FeO 0.77 0.79 0.80 1.03 0.84 0.82
sum 100.23 100.82 100.65 101.09 99.68 100.01

Cations/8 oxygens
Si 2.218 2.383 2.230 2.321 2.235 2.344
Al 1.743 1.584 1.736 1.643 1.732 1.624
Na 0.253 0.414 0.255 0.336 0.257 0.361
K 0.011 0.019 0.010 0.015 0.010 0.017
Ca 0.789 0.611 0.773 0.680 0.766 0.655
Fe 0.030 0.030 0.031 0.039 0.033 0.031
total 5.043 5.041 5.034 5.033 5.033 5.032
An 75.0 58.5 74.5 65.9 74.1 63.5
Ab 24.0 39.6 24.6 32.7 24.9 34.9
Or 1.0 1.8 0.9 1.4 1.0 1.6
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zoned, with cores of An75 and narrow rims ranging 
down to An58 (Table 4, Fig. 8). Plagioclase is not 
observed to be in a reaction relationship with any 
megacryst phase.

Origin of the megacrysts and xenocrysts.  
Taken as a group, the clinopyroxene and olivine 
megacrysts or xenocrysts from Mole Hill have 
compositions less evolved than typical mantle 
peridotites, even relatively fertile subcontinental 
lherzolites (e.g. Rudnick et al., 2004; Ackerman et 
al., 2007; Bjerg et al., 2009). On the other hand, 
many continental xenolith suites include a variety 
of clinopyroxene-rich ultramafic rocks such as 
clinopyroxenite, olivine clinopyroxenite, and 
wehrlite (Wilshire and Shervais, 1975; Irving, 1980; 
Ghent et al., 1980; Brearly et al, 1984; Kovacs et 
al., 2004; Rehfeldt et al., 2007; Xiao et al., 2010). 
Two groups of cpx-rich xenoliths are recognized, 
a Cr-diopside suite, which is typically dominated 
by rocks relatively rich in olivine (e.g. cpx-rich 
lherzolite) and an Al-augite suite in which cpx 
is generally the dominant mineral (Wilshire and 
Shervais, 1975; Irving, 1980). The Al-augite suite 
rocks occur as individual xenoliths, and, perhaps 
even more commonly, as veins intrusive into 
typical mantle peridotites in composite xenoliths. 
These cpx-rich veins reflect metasomatism of the 
lithosphere either by melts or fluids (Wilshire and 
Shervais, 1975; Irving, 1980)). 

The megacrystic/xenocrystic olivine, cpx, and 
spinel at Mole Hill suggest an affinity with the Al-
augite xenolith suite. First, the Mg# of both olivine 
and cpx are lower than would be expected for 
unmodified mantle and within the range observed in 
the Al-augite suite. Second, the low Cr2O3 (most <0.4 
wt.%) and high Al2O3 (most >7 wt.%) in Mole Hill 
cpx are typical (and definitive) of the Al-augite suite 
(Wilshire and Shervais, 1975). Third, the Mole Hill 

aluminous megacrystic spinels have exceptionally 
low Cr content and Cr#, among the lowest ever 
reported for putative mantle-derived spinels. Low 
Cr# (e.g. <10) spinels occur in a variety of xenolith 
suites (Fig. 5) (Barnes and Roeder, 2001), including 
Al-augite xenoliths. However, spinels with Cr#<3 
appear to occur exclusively within the Al-augite 
suite (Wilshire and Shervais, 1975; Ghent et al., 
1980; Brearly et al, 1984; Kovacs et al., 2004; 
Rehfeldt et al., 2007).  The one feature of the Mole 
Hill megacryst suite that is atypical of the Al-augite 
suite is the relatively high NiO concentration in 
some Mole Hill olvine. One possible explanation for 
this is that the Ni-rich olivines represent fragments 
of the host peridotite, rather than the cpx-rich vein 
assemblage. The presence of a single Cr-rich spinel 
inclusion in one magnesian olivine megacryst is 
supportive of an origin distinct from the cpx and 
aluminous spinel megacrysts for at least some 
olivine.

Implications of cognate mineral compositions 
for origin and evolution of the picrobasalt.  

At present, no reliable whole-rock chemical 
data exists for the Mole Hill diatreme. The single 
analysis in Southworth et al. (1993) is of highly 
altered and contaminated rock. Some hints as to 
the nature of the magma, however, may be found 
in the compositions of microphenocryst and 
groundmass (cognate) minerals. The moderate Cr-
content of some cognate cpx and titanomagnetite, 
the relatively calcic nature of the plagioclase, and 
the moderate (e.g. ~70) Mg# of cognate cpx and 
olivine all suggest derivation from a somewhat, but 
not extensively, evolved alkali basalt-type magma. 
A more detailed understanding of the petrogenesis 
of the magma awaits further mineral and, especially, 
whole-rock chemistry. 

Discussion
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