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and Its Petrogenetic Consequences 

James S. Beard

ABSTRACT
The reaction of pyroxene plus melt to form amphibole was recognized by Bowen in his earliest depictions 

of the reaction series. This reaction was included primarily on the basis of observations of amphibole 
reaction rims about pyroxene. However, the nature of the amphibole-forming reaction was not known to 
Bowen. Experimental and geochemical work completed since the late 1980s has now identified this reaction, 
known as dehydration melting, as a peritectic reaction whereby amphibole melts incongruently to form 
an anhydrous phase assemblage, mostly pyroxene, coexisting with a hydrous, but water-undersaturated 
melt. It is analogous to the incongruent melting of Mg-Fe pyroxene that was first documented by Bowen 
himself. Bowen’s reaction series is integral to most introductory geology (and virtually all introductory 
petrology) curricula. This latterday documentation of a second peritectic reaction in the series is a powerful 
proof-of-concept that further validates the importance and relevance of the reaction series as a pedagogic 
tool. The peritectic behavior of amphibole has been shown to have important implications for the genesis, 
crystallization, hybridization, and fractionation behavior of magmas. These include the genesis of silicic 
magmas, the behavior of water during crystallization and the chemistry of fractionating systems. Thus, the 
exploration of the petrological consequences of incongruent melting behavior of amphibole also has a place 
for discussion in (at least) higher level petrology classes.
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BOWEN’S REACTION SERIES
The reaction series (now widely known as 

Bowen’s reaction series) was conceived by N.L. 
Bowen (1922, 1928) as a graphical means to 
characterize the changes in mineralogy that occur 
during the fractional crystallization of a basaltic 
magma. In 1980, Hans Eugster, Bowen’s biographer, 
noted that the reaction series had “found its way 
into every text on igneous petrology” (Eugster, 
1980). Nothing much has changed since 1980, as 
the reaction series is still presented not only in most 
introductory geology texts, in print or online (see 
Johnson et al. (2017) for a typical example), but in 

virtually every introductory discussion of igneous 
petrogenesis in classrooms around the world.

Bowen based the series on a combination of 
experimental results and observations of natural 
igneous rocks. Bowen’s reaction series is presented 
as a branched diagram, with one branch (continuous 
reaction) representing changes in plagioclase 
composition while a second branch (discontinuous 
reaction) represents changes in mafic mineralogy 
(Figure 1). 

The continuous series reflects the changes in 
plagioclase composition during crystallization 
from more calcium rich to more sodium rich as 
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diopside. The position of the next mineral in the 
discontinuous series—amphibole—was inferred (in 
part) from direct observation of amphibole coronas 
mantling pyroxene (Figure 2C). The exact nature 
of this amphibole-pyroxene reaction, however, 
was not known to Bowen and not experimentally 
documented until the late 1980s—nearly 70 years 
after the reaction series was first postulated. It is 
this reaction that is the focus of this commentary.

DEHYDRATION MELTING: THE 
 INCONGRUENT MELTING OF  

AMPHIBOLE
Dehydration melting (Thompson, 1982), is the 

incongruent, vapor-absent melting of a hydrous 
phase (mica or amphibole) to yield an anhydrous 
mineral assemblage coexisting with a hydrous, but 
water-undersaturated, melt (e.g. Beard et al. 2004). 
Dehydration-melting of amphibole was documented 
in a series of experimental studies published in 
the late 1980s early and mid-1990s (Beard and 
Lofgren, 1991; Wolf and Wyllie, 1991; 1994, Rapp, 
Watson and Miller, 1991; Rapp and Watson, 1995; 
Rushmer, 1991, Skjerlie and Johnston, 1992; Patino 
Douce and Beard, 1995). The dehydration melting 
of amphibole can be summarized as: amphibole +/- 
qtz = pyroxene + hydrous, dacitic melt. 

Given the compositional complexity of 
hornblendic amphibole, the actual reaction tends 
to be more complicated. Depending on various 
factors (bulk composition in particular), the 
reaction may be accompanied by changes in 
plagioclase composition and by the formation of 
other anhydrous phases, particularly Fe-Ti oxides. 
It is also now known that the reaction occurs over a 
range of temperatures, with amphibole composition 
changing as melt fraction increases (Patino Douce 
and Beard, 1995). Note also that at pressures above 
8 kbar, garnet becomes an important part of the 
anhydrous phase assemblage (Rapp et al., 1991; 
Wolf and Wyllie, 1991). 

Dehydration melting (in particular, as opposed 
to water-saturated melting) was shown to be a 
mechanism to generate dacitic magmas with 
compositions similar to those observed in island 
arcs and ophiolites (Beard and Lofgren, 1991) or, 
at higher pressure with garnet stable, Archaean 

temperature decreases. Bowen was well aware 
of this behavior, both from his own experiments 
(Bowen, 1913) and from the observation of 
zoned plagioclase in igneous rocks (Figure 2A). 
In particular, plagioclase zoning in igneous rocks 
reflects the early, high-temperature crystallization 
of calcic feldspar preserved in the cores of zoned 
crystals vs. later, more sodic feldspar that occurs at 
the rims of zoned crystals. 

The discontinuous series is more complex 
and it includes some simplifications as well as 
observations not constrained by experiment in 
Bowen’s time. In particular, Bowen placed Mg-
pyroxenes immediately below olivine in the series 
because of the well-documented peritectic reaction 
relationship between those two phases (Bowen 
and Anderson, 1914) (Figure 2B). He placed 
Mg-Ca pyroxenes next in the series, although he 
acknowledged that Mg-Ca pyroxenes could occur 
in a rock with olivine, but lacking Mg-pyroxene 
(e.g. Table 1 in Bowen, 1928). He correctly inferred 
that this was a function of bulk composition related 
to phase behavior in the system forsterite-silica-
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Figure 1. Bowen’s Reaction Series after Bowen (1928). The 
peritectic reactions in the discontinuous series are labeled and 
shown by dashed lines. Note the addition of px+melt = am as 
a new peritectic reaction.



Beard: A second peritectic reaction in Bowen’s reaction series 3

tonalites (Rapp et al. 1991). This work and that 
which succeeded it throughout the 1990s was 
focused almost entirely on dehydration melting as 
a mechanism for tonalite/trondhjemite petrogenesis 
and little thought was given to other implications 
of this reaction. In particular the implications 
of the reaction for magma crystallization were 
unexplored. Furthermore, even though dehydration 
melting—where a hydrous mineral breaks down to 
form a hydrous melt coexisting with an anhydrous 
mineral assemblage—is obviously an incongruent 
melting reaction, it was not explicitly described as 
such at the time (e.g. Vielzeuf and Schmidt, 2001). 

HYDRATION CRYSTALLIZATION
The down-temperature, amphibole-forming part 

of the incongruent reaction is termed “hydration 
crystallization” (Beard, Ragland, and Rushmer, 
2004). Hydration crystallization is the process 
that produces the amphibole rims on pyroxene 
that are nearly ubiquitous in calc-alkaline gabbros 
and diorites (Figure 2C). It was the petrographic 
observation of these “coronas” that led Bowen to 
propose a reaction relationship between pyroxene 
and amphibole. In particular, Bowen (1928) 
recognized that these coronas could not form by 
simple hydration of pyroxene, but that a melt had 

Figure 2. Petrographic manifestations of the reaction series. A.) Plagioclase zoned from a calcic (dark) core to a sodic rim. B.) 
Olivine with an orthopyroxene (opx) rim, a manifestation of the peritectic reaction ol + melt = opx. C.) Clinopyroxene (cpx) 
and orthopyroxene (opx) partially replaced by amphibole, a manifestation of the peritectic reaction simplified as pyroxene + 
hydrous melt =amphibole.
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to be involved to account for the compositional 
difference between amphibole and pyroxene. For 
example, a prediction from reaction stoichiometry 
is that any reaction that forms amphibole (typical 
SiO2 <48%) from pyroxene (typical SiO2>50%) 
must yield free silica while extracting alkalis 
from the melt. The exploration of this reaction in 
light of both the results of dehydration melting 
experiments and petrographic observation has led 
to insights concerning the late-stage crystallization 
of magmas. Most critically, the reaction presents 
a new way to view the late stage crystallization 
of rocks. Magmatic chemical differentiation 
trends produced by the peritectic crystallization of 
amphibole are very different from, for example, 
those produced by the direct crystallization and 
fractionation of amphibole (Beard et al., 2004; 
Beard, Ragland and Crawford, 2005a).  In addition, 
the reaction has the capacity to buffer the water 
content of a melt, always to the point of minimizing 
melt water concentration and even to the point (in 
theory) of precluding water saturation altogether 
(Beard et al. 2004). These implications remain to be  
fully explored.

PEDAGOGIC AND PETROLOGIC  
IMPORTANCE OF A “NEW” REACTION IN 

BOWEN’S REACTION SERIES
Two mineral-melt reactions were explicitly 

defined in Bowen’s original series. These are the 
continuous reaction of plagioclase with melt to 
produce increasingly sodic compositions down 
temperature and the peritectic reaction of olivine and 
melt to produce Mg-pyroxene. The other reactions, 
including the reaction by which amphibole forms 

from pyroxene plus melt, are inferred. In essence, 
the argument here is that we now can and should 
acknowledge the peritectic reaction generalized 
as pyroxene + melt = amphibole in any discussion 
of Bowen’s reaction series (Figure 1). First, the 
amphibole reaction validates the concept of a 
reaction series, in the strict sense, by providing 
an additional quantified example of a mineral-
melt reaction. Second, it emphasizes the value of 
petrographic observation (e.g. amphibole mantles 
on pyroxene), indicating that it is a useful first-
order tool for describing the chemical behavior of 
magmas. Finally, it reinforces the value of fact-
based intuition in science. Bowen extrapolated the 
reaction series to amphiboles on the basis of his 
observations of natural rocks and his knowledge 
of experiment-based phase petrology. In essence, 
the peritectic behavior of amphibole was predicted 
by and is a proof-of-concept for Bowen’s reaction 
series.

Beyond this, the importance of the incongruent 
dehydration melting of amphibole, both in terms of 
the direct generation of dacitic magmas and in terms 
of the facilitation of bulk assimilation and magma 
hybridization is widely recognized (Beard and 
Lofgren, 1991; Rapp and Watson, 1995; Vielzeuf 
and Schmidt, 2001, Otamendi et al., 2009). As an 
indication of this, Google Scholar documents over 
2,200 citations for the Rapp and Watson paper, nearly 
1,000 for the Beard and Lofgren paper, and hundreds 
of citations each for many other dehydration-
melting papers published between 1989 and 1997. 
A discussion of the petrogenetic importance of the 
reaction in its own right certainly deserves a place 
in, at least, advanced petrology classes.
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